

Main Injector Neutrino Oscillation Search

Mary Bishai Brookhaven National Laboratory

MINOS

Beam Systematics

Atmospheri

Terrestrial u_e Appearance

ummary

Main Injector Neutrino Oscillation Search DOE Site Visit, Sep 8 2009

Mary Bishai Brookhaven National Laboratory

September 8, 2009

- **1** MINOS
- 2 Beam Systematics
- 3 Atmospheric ν_e
- 4 Terrestrial ν_e Appearance
- 5 Summary

BROOKHAVEN NATIONAL LABORATORY

The NuMI/MINOS Accelerator u_{μ} Experiment

Observe $\nu_\mu/ar{
u}_\mu$ disappearance, $u_{\rm e}$ appereance, atmospheric $u/ar{
u}$ oscillations, search for $u_{\rm s}$

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhave National Laboratory

MINOS

Beam Systematic

ν_e

Appearance

The MINOS Detectors

scintillator strips readout by WLS fiber.

Main Injector Neutrino Oscillation Search

MINOS

484 octogonal steel and

scintillator plates 8m wide,

Far Detector

Magnetized iron calorimeters with 2.54 cm thick Fe plates sandwiched with

 \Rightarrow 5.4kTon and 30 m in length

- Toroidal B-field, 1.3 T at r = 2m
- Cosmic μ veto shield

Near Detector

282 "squashed" octagonal steel plates, 153 scintillator planes.

 \Rightarrow 1kTon and 16 m in length

■ Toroidal B-field, 1.3 T at r = 2m

MINOS Data (2009)

The NuMI beam contains 91.5% ν_{μ} , 7 % $\bar{\nu}_{\mu}$ and 1.5% $\nu_{\rm e} + \bar{\nu_{\rm e}}$

Main Injector Neutrino Oscillation Search

Brookhave National Laboratory

MINOS

Systematic

Atmospheric $u_{
m e}$

Terrestrial $u_{
m e}$ Appearance

Observe 35.

Expected (with osc) 58.3 \pm 7.6 $_{\rm stat}$ \pm 3.6 $_{\rm sys}.$ Observe 42.

MINOS results 2009:

ν_{μ} Disappearance:

$$\Delta m_{32}^2 = 2.43 \pm 0.13 \times 10^{-3} \text{eV}^2$$
 5% accuracy

 $\sin^2 2\theta_{23} > 0.90(90\%$ C.L.)

 $\bar{
u}_{\mu}$ Disappearance: Fraction $u_{\mu}
ightarrow \bar{
u}_{\mu} < 0.026(90\%\text{C.L.})$

 $\nu_{\rm e}$ appearance:

$$\sin^2 2\theta_{13} < 0.29(90\%\text{C.L.}); \Delta m^2 > 0, \delta_{\text{cp}} = 0$$

 $\sin^2 2\theta_{13} < 0.42(90\% {\rm C.L.}); \Delta m^2 < 0, \delta_{cp} = 0$ Search for ν_s

BNL People and Activities 2008-2009

Main Injector Neutrino Oscillation Search

Mary Bish Brookhave National Laborator

MINOS

Beam Systematic

Atmospher

Terrestrial u_{0}

Summary

or				
	Person	Position	MINOS activities	
	Mary Bishai	Physicist	Beam systematics co-convener Joint MiniBoone/NuMI off-axis analysis (PRL 102, 2009)	
	Milind Diwan	Physicist	Former $\nu_{\rm e}$ analysis co-convener $\bar{ u}_{\mu}$ oscillation analysis internal reviewer	
	David Jaffe	Physicist	$ar u_\mu$ oscillation analysis $ar u_\mu$ beam systematics $ u_{ m e}$ appearance analysis internal reviewer	
	Brett Viren	Physicist	Beam data software maintenance and beam simulations	
	Lisa Whitehead	Research Associate	$ u_{ m e}$ appearance analysis	
	Kevin Zhang	Research Associate	Atmospheric $ u_{\rm e}$ analysis	

MINOS Beam Systematics Group Efforts '08-'09 M. Bishai co-convener

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhave National Laborator

MINO

Beam Systematics

Atmospher u_{e}

Terrestrial u_ϵ Appearance

Summary

- Implementation and validation of a detailed NuMI beam-line simulation using the FLUKA08 hadro-production model and GEANT4 geometry. This was necessary to improve the modeling of production in the decay pipe after He was added in 2007 (GEANT3 model is grossly incorrect).
- Re-evaluation of hadro-production and geometry systematics with He in the decay pipe and accurate beam-line material for ALL '09-'10 MINOS/NuMI analysis results.
- Understanding MINOS near detector spectrum stability.

M. Bishai heavily involved in validation of new FLUKA08/GEANT4 simulation for the NuMI Beam-line

MINOS ν_{μ} Spectrum vs Time

Main Injector Neutrino Oscillation Search

Ream Systematics

NuMI target experience

(ZXF-5Q amorphous graphite)

Gradual decrease in neutrino rate attributed to target radiation damage

Decrease as expected when decay pipe changed from vacuum to helium fill

Exposure in MINOS with Target 2:

Run II: $\sim 2 \times 10^{21}$ protons-on-target.

Run III: $> 3 \times 10^{21}$ protons-on-target with He in decay pipe.

Target Radiation Damage

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhave National Laboratory

MINOS

Systematics Atmospheric

Atmospheric $u_{
m e}$

Appearance

Data from Nick Simos, BNL using 200 MeV proton fluence at BLIP (Brookhaven Linac Isotope Producer) $\sim 10^{21}~\rm p/cm^2$.

This work was carried out independent of the MINOS effort . M. Bishai's Early Career Research proposal includes request for support for BNL efforts on target irradiation and material R&D for LBNE.

NuMI Target 2 has been exposed to $\sim 10\times 10^{21}$ 120 GeV p/cm². M. Bishai, D. Jaffe first to demonstrate spectrum change could be caused by target irradiation damage.

Main Injector Neutrino Oscillation Search

Atmospheric $\nu_{\rm e}$

Since these events do not undergo significant oscillations, they are used to normalize the total neutrino flux in the MINOS FD for the atmospheric ν_{μ} oscillation analysis.

Atmospheric ν_e Results 24.6 kT-Yrs

Kevin Zhang, David Jaffe

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhaver National Laboratory

MINO

Systematics Atmospheric

 $\nu_{\rm e}$

Terrestrial ν_ι Αρρεαταπος

ummar

First draft of MINOS atmospheric analysis PRD - including completed atmospheric $\nu_{\rm e}$ analysis - to be circulated to collaboration in September.

Data	Expectation ($\Delta m^2_{32} = 2.5 imes 10^{-3} { m eV}^2$, $\sin^2 2 heta_{23} = 1.0$)				
	cosmic μ	$ u_{\mu}/ar{ u}_{\mu}$ CC	$ u_{ m e}/ar u_{ m e}$ CC	$ u_{ au}/ar{ u}_{ au}$ CC	NC
292	26 ± 3	47 ± 7	159 ± 24	12 ± 2	57 ± 14
292	301 ± 43				

The MINOS $u_{ m e}$ Appearance Search with $3.2 imes 10^{20}$ p.o.t

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhaver National Laboratory

MINO:

Systematic

Atmospheri u_{e}

Terrestrial $u_{
m e}$ Appearance

ummar

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhave National Laboratory

MINOS

Beam Systematics

 $u_{
m e}$

Terrestrial $u_{
m e}$ Appearance Improve analysis sensitivity by using improved PIDs and energy and PID distributions simultaneously fit for signal and background.

Expected sensitivity with 7×10^{20} p.o.t at 90% C.L:

Improvements in sensitivity using Lisa's techniques will be adopted for the next ν_e analysis result \sim winter 2009

Summary

Main Injector Neutrino Oscillation Search

Mary Bisha Brookhave National Laboratory

MINOS

Beam Systematics

Atmospher

Terrestrial ν_ι Αρρεαταπος

Summary

- The BNL MINOS group has been involved in a wide variety of successful MINOS analysis efforts: $\bar{\nu}_{\mu}$ oscillation, $\nu_{\rm e}$ appearance, atmospheric $\nu_{\rm e}$, beam systematics, joint MiniBoone/NuMI analysis.
- The BNL MINOS group in collaboration with other local experts and utilizing unique BNL facilities are providing critical information for understanding MINOS beam data.
- BNL group members continue to serve as analysis group co-conveners.
- We continue to be responsible for online beam monitoring and beam data quality and proton counting.
- The BNL MINOS group's expertise on NuMI/MINOS analysis and beam simulations has been critical in producing the first LBNE beam designs and making the physics case.